

Page 1 of 6
©2014 EAPJ.org

Complementing Agile SDLC with Agile Architecture
By David Shilman

Today’s highly competitive and customer-centric market conditions have pushed software and
solution delivery organizations beyond the traditionally accepted limits of software
development and delivery capabilities. Lean methodologies such as Lean Six Sigma and DevOps
can help improve operational solution delivery capacities through

 Streamlining of solution delivery process

 Improved software quality

 Automation of system operations

 Self-administration of system operations by development teams

 Agile methodologies augment such operational improvements with their own enablement of
faster time to market (TTM) by transforming the Lean concept of value-added activities into
value-added product features. Agile software architecture augments solution delivery
organizations’ Agile software development life cycle (SDLC) capabilities with flexible
architectures that facilitate future product development.

Agile methodologies extend product lifecycles through faster TTM and continuous delivery to
ensure high quality of service (QoS) defined by functional feasibility, business and technology
capabilities. The Agile SDLC produces the Minimally Viable Product (MVP), which is
continuously enhanced with value-added product features. While most architects have limited
knowledge of future trends in software products, they must still design software to make future
seamless enhancements possible throughout the entire product life cycle. This type of
application architecture fits the definition of Agile. Agile application architecture must support
and complement the Agile SDLC through the following architecture principles, which are
derived from the Agile Manifesto principles:

 Application architecture must be extendable: Build for change

 Application architecture must enhance developers’ productivity

 Application architecture must not contribute to technical debt

 Application architecture must continuously improve

“Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.” - Agile Manifesto Principle #2

Build for Change

A former CIO of a Fortune 300 company once said “Enterprise architects must be at least six
months ahead of the solution delivery organization they support”. This can be understood as
advice to enterprise architects to keep current with technology trends and educate their peers

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

Page 2 of 6
©2014 EAPJ.org

in order to influence organization’s solution delivery capabilities. Although that might have
been his intended message, in the context of Agile SDLC, there is another interpretation:
Application architects must produce architecture that will empower rather than just support
solution delivery teams in delivering and maintaining software with the optimal balance of
schedule, cost and non-functional quality.

Application architects provide true value to solution delivery teams by anticipating and
initiating technological advancements in areas such as customer communication, information
management, security and integration, and computing platforms in their organizations. They
prepare for these changes with simple, structurally and behaviorally loosely-coupled application
architecture that is agnostic of the client device and hosting infrastructure. In other words, agile
application architectures enable developers to replace components and change how they
communicate with each other through software configuration. (Table 1). Such loosely-coupled
architectures enable their owners to rapidly adopt successive generations of mobile and cloud
technology as business needs dictate.

Table 1. Examples of design patterns for structural and behavioral loose coupling

Pattern
Gang of Four

Design
Pattern

Type
Description

Inversion of
Control (IoC)

Factory

Structural

IoC is a modern day reinvention of the
Factory Gang of Four (GoF) design
pattern. IoC, also known as
Dependency Injection, decouples an
application component interface from
its implementation, allowing
application developers to swap
application components through
software configuration rather than
extensive code changes (Figure 1).

Messaging Mediator Behavioral

This message-centric integration
design pattern implemented with
Message Oriented Middleware (MOM)
allows application developers to
configure run-time component
interactions without writing code.
(Figure 2).

http://en.wikipedia.org/wiki/Design_Patterns#Structural
http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns#Behavioral
http://en.wikipedia.org/wiki/Message-oriented_middleware

Page 3 of 6
©2014 EAPJ.org

Figure 1. Structurally loosely-coupled application architecture using Data Access Objects (DAOs)
to facilitate replacement of the underlying persistence mechanism.

Figure 2. Behaviorally loosely-coupled system architecture using a configurable Message Bus to
control component interactions.

“Continuous attention to technical excellence and good design enhances agility.” - Agile
Manifesto Principle #9

Application Architecture Must Enhance Developers’ Productivity
The Kanban method introduced the concept of managed flow constrained by Work-In-Progress (WIP)
limits, which quantitatively describe an organization’s operational capacity. WIP limits are usually
influenced by solution delivery organizations’ head count and SDLC process efficiency. Good application
architecture can also improve solution delivery capabilities by increasing the WIP limits.

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/dao.html
http://www.eaipatterns.com/MessageBus.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://en.wikipedia.org/wiki/Kanban
http://en.wikipedia.org/wiki/Work_in_progress
http://en.wikipedia.org/wiki/Work_in_progress

Page 4 of 6
©2014 EAPJ.org

Various studies show that most IT budgets allocate as much as 80% to software maintenance.
Application architects must not only enable rapid solution delivery, but also reduce product
maintenance cost throughout the software’s entire life span by enhancing quality of service (QoS) and
developer productivity.

Application architects should strive to free application developers of all non-functional coding by

allowing them to focus on and efficiently implement features with direct customer value. Table 22
illustrates the agile application architecture practices that best empower application developers.

Table 2. Agile Application Architecture Practices.

Pattern Description

Loose coupling of application tiers

Loose coupling of application tiers through JavaScript Object
Notation (JSON) or eXtensible Markup Language (XML)
allows application developers to program application
components simultaneously based on a flexible tagged data
structure rather than a data object that creates compile
dependencies between application components. Developers
can program loosely-coupled components in parallel without
impacting one another, and reconcile their changes as they
merge their work.

RESTful application programming
interfaces (APIs)

Exposing server side data and business components through
stateless RESTful APIs based on straightforward web URLs
allows reuse of application components a wide variety of
distributed clients. This approach significantly reduces
server-side application footprint and the prospect of
technical debt.

Open source commons libraries

Popular open source frameworks such as Apache Commons
and Google Guava help reduce development effort by
eliminating boiler-plate code and reducing application
footprint

Single-page applications

Single-page applications, which enhance user experience
with rich graphical user interfaces and instant response, are
typically engineered with browser-based technologies like:

 Rich Internet Application JavaScript frameworks

 Ajax

 CSS

Responsive design

Incorporating responsive design into a web application UI
allows access from a variety of web/mobile client devices,
which reduces the prospect of technical debt as client
technologies progress.

NoSQL (Not Only SQL) databases

Among other uses, NoSQL databases excel at storing
transient data and dynamic data structures without
extensive support from data architects and database
administrators.

http://json.org/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://commons.apache.org/
http://code.google.com/p/guava-libraries/
http://en.wikipedia.org/wiki/Single-page_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Css
http://en.wikipedia.org/wiki/Responsive_design
http://nosql-database.org/

Page 5 of 6
©2014 EAPJ.org

Together, these practices shorten the critical path of development projects. They enable parallel
development with reduced dependencies between application components and tiers, decrease
application footprint with increased software reuse, reduce data administration and operations efforts
with newer database technology, and therefore improve prospects for continuous delivery.

“Simplicity--the art of maximizing the amount of work not done--is essential.” - Agile
Manifesto Principle #10

Application Architecture Must Not Contribute To Technical Debt
There is a strong demand from business partners and customers to access end-user facing applications
from a variety of web and mobile devices. Modern web application architecture must incorporate
multichannel content delivery and responsive design in order to meet this business demand with
efficiently. Failure to adapt to customer needs quickly will reduce the solution delivery organization’s
competitive advantage and contribute to its technical debt. Application architects need to challenge
themselves and embrace new and unfamiliar technologies geared to enhance end-user experience (UX)
with minimum redundancy in technology assets (Figure 3).

Figure 3. An Agile application architecture that enables reusability across client platforms.

“At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.” - Agile Manifesto Principle #12

Application Architecture Must Continuously Improve

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

Page 6 of 6
©2014 EAPJ.org

During the scrum retrospective, Agile teams improve their sprint execution capabilities. Enterprise
Architecture also benefits from continuous improvement. As new technologies and patterns are
adopted, architects should incorporate them in the Standards Information Base within the
organization’s architecture repository. Enterprise architects and development teams need to
continuously identify opportunities to improve collaborative architecture development and governance
and to respond faster to architecture changes in order to provide value and build agility.

Conclusion

In today’s economy, business and IT stakeholders often make decisions to buy versus build based on
software solution quality, cost and time to market delivery capabilities. Furthermore, customers’
expectations of user experience have continued to rise. IT organizations can no longer measure
application quality by yesterday’s internally-focused standards without running the risk of producing
applications classified as “legacy” rather than “modern” after only a short time in production.

An earlier version of this article originally appeared in the Cutter Consortium Business and
Enterprise Architecture Practice -
http://www.cutter.com/content/architecture/fulltext/advisor/2014/ea140723.html

About the Author:

David Shilman is an Enterprise Architect with a Fortune 300 company. David started his professional
career as a programmer. Throughout his career development, David has embraced technology and SDLC
best practices. In his previous role as an application development manager, David was an early adopter
of Lean and Agile practices and methodologies, which he utilized to streamline and improve the solution
delivery capabilities of his team. In his current role, David spearheads TOGAF awareness and adaptation
in his organization. David has a B.S. in Mathematics, and holds advanced certifications in Enterprise
Architecture, Project Management and Lean Six Sigma. David is a father of five, and enjoys spending
time and playing sports with his kids.

http://www.cutter.com/architecture.html
http://www.cutter.com/architecture.html
http://www.cutter.com/content/architecture/fulltext/advisor/2014/ea140723.html

